Current Approaches for Evaluating Potential Health Risks from Polychlorinated Biphenyls in Indoor School Air

Geniece M. Lehmann, Ph.D. Linda J. Phillips, Ph.D. (U.S. EPA/ORD)

DIOXIN 2017

August 22, 2017

Overview

- Human health risk assessment of inhaled PCBs
 - Hazard identification
 - Dose-response assessment
 - Exposure assessment
 - Current approaches to minimize risk

The views expressed here are those of the author and do not necessarily reflect the views or policies of the U.S. EPA.

Human health risk assessment of inhaled PCBs

Reference Values Available on U.S. EPA's Integrated Risk Information System (IRIS)

Non-cancer values

- An estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime
- Oral reference doses (RfDs)
 - Aroclor 1254 (20 ng/kg-day)
 - Aroclor 1016 (70 ng/kg-day)
- No inhalation reference concentration (RfC)

Reference Values Available on U.S. EPA's Integrated Risk Information System (IRIS)

Cancer values

- An upper bound, approximating a 95% confidence limit, on the increased cancer risk from a lifetime exposure to an agent
- Oral Slope Factors
 - High risk/persistence (2.0 per mg/kg-day)
 - Low risk/persistence (0.4 per mg/kg-day)
 - Lowest risk/persistence (0.07 per mg/kg-day)
- Inhalation Unit Risk
 - 0.0001 per μg/m³ (extrapolated from the low risk/persistence slope factor)

Reference Values Available on U.S. EPA's Integrated Risk Information System (IRIS)

- Route-to-route extrapolation (e.g. oral-to-inhalation)
 - PCB toxicity is not expected to vary based on route of exposure.
 - Metabolic pathways are similar by each route.
 - Critical effects are systemic, and PCBs are generally not associated with respiratory effects.
 - PCBs are well-absorbed through both oral and inhalation routes.

Toxicological Database Supporting Reference Values

Outcome	Human (in vivo) Studies	Animal (in vivo) Studies	Lowest Adverse Effect Level (LOAEL) (mg/kg-day)
Reproductive	+	+++	0.08 (monkey)
Developmental	+	++	0.028 (monkey)
Neurological	++	+	0.006 (monkey)
Hepatic	+	++	0.06 (rats)
Gastrointestinal	+	+	0.94 (pigs)
Endocrine	-	++	0.09 (rats)
Respiratory	+	+	0.94 (pigs)
Immunologic / Dermal / Ocular	+	+++	0.005 (monkey)

Toxicological Database Supporting Reference Values

Outcome	Human (in vivo) Studies	Animal (in vivo) Studies	Lowest Adverse Effect Level (LOAEL) (mg/kg-day)
Reproductive	+	+++	0.08 (monkey)
Developmental	+	++	0.028 (monkey)
Neurological	++	+	0.006 (monkey)
Hepatic	+	++	0.06 (rats)
Gastrointestinal	+	+	0.94 (pigs)
Endocrine	_	++	0.09 (rats)
Respiratory	+	+	0.94 (pigs)
Immunologic / Dermal / Ocular	+	+++	0.005 (monkey)

Aroclor 1254 RfD Derivation (IRIS)

LOAEL (immunotoxicity)
0.005 mg/kg-day
= 5,000 ng/kg-day

 $\begin{array}{c} \underline{\text{Uncertainty Factors}} \\ \div 10 \\ \text{(sensitive populations)} \\ \div \sqrt{10} \\ \text{(monkeys} \neq \text{humans)} \\ \div \sqrt{10} \\ \text{(effect at lowest tested dose)} \\ \div \sqrt{10} \\ \text{(study duration)} \end{array}$

Aroclor 1254 RfD 20 ng/kg-day

An estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime

Do PCBs in indoor air pose a health risk?

Exposure assessment in schools

- Populations
 - Students
 - Teachers/staff
 - Custodial worker
- Exposure routes
 - Oral (e.g., food, soil, dust)
 - Inhalation (e.g., indoor air)
 - Dermal (e.g., contact with soil and dust)

Exposure Scenarios

Assumptions

- Body weight
- Inhalation rate
- Fraction of time spent in school
- Total daily dust and soil ingestion
- Dermal exposure to indoor dust
- Relative absorption factors

Background exposures

- Dust and soil ingestion
- Indoor air inhalation (non-school)
- Outdoor air inhalation
- Dermal exposure to indoor dust
- Dietary background (U.S. FDA Total Diet Study)

Risk Characterization

Derived Exposure Levels for Evaluation of PCBs in Indoor School Air (ELEs) that would yield an overall PCB exposure ≤ 20 ng PCB/kg-day (IRIS RfD for Aroclor 1254), taking into account background exposures.

$$ELE (ng/m^{3}) = \frac{(RfD (ng/kg/day) - Background Dose (ng/kg/day)) \times BW (kg)}{Inhalation Rate (m^{3}/day) \times Relative Absorption \times Fraction of time spent in school}$$

Exp	osure Leve	ls for Evalua	ating PCBs i	n School Ind	door Air (ng	/m³)
Age 1-<2 yr (Daycare)	Age 2-<3 yr (Daycare)	Age 3-<6 yr (Preschool)	Age 6-<12 yr (Elementary School)	Age 12-<15 yr (Middle School)	Age 15-19 yr (High School)	Age 19+ yr (Adults)
100	100	200	300	500	600	500

Exposure Levels for Evaluating PCBs in School Indoor Air (ng/m³)

Age 1-<2 yr (Daycare)	Age 2-<3 yr (Daycare)	Age 3-<6 yr (Preschool)	Age 6-<12 yr (Elementary School)	Age 12-<15 yr (Middle School)	Age 15-19 yr (High School)	Age 19+ yr (Adults)
100	100	200	300	500	600	500

$$ELE (ng/m^{3}) = \frac{(RfD (ng/kg/day) - Background Dose (ng/kg/day)) \times BW (kg)}{Inhalation Rate (m^{3}/day) \times Relative Absorption \times Fraction of time spent in school}$$

Exposure Levels for Evaluating PCBs in School Indoor Air (ng/m³)

Age 1-<2 yr	Age 2-<3 yr	Age 3-<6 yr	Age 6-<12 yr	Age 12-<15 yr	Age 15-19 yr	Age 19+ yr
(Daycare)	(Daycare)	(Preschool)	(Elementary School)		(High School)	(Adults)
100	100	200	300	500	600	500

$$ELE (ng/m^{3}) = \frac{(RfD (ng/kg/day) - Background Dose (ng/kg/day)) \times BW (kg)}{Inhalation Rate (m^{3}/day) \times Relative Absorption \times Fraction of time spent in school}$$

ELE $(ng/m^3) =$

 $\frac{(RfD (ng/kg/day) - Background Dose (ng/kg/day)) \times BW (kg)}{Inhalation Rate (m³/day) \times Relative Absorption \times Fraction of time spent in school}$

Exposure Factor (EF)	EF Data	Used
Exposure Factor (EF)	Children 1-2 years	Adults
Dust Ingestion Rate	60 mg/d	27.5 mg/d
Soil Ingestion	50 mg/d	22.5 mg/d
Inhalation Rate	8.0 m ³ /d	15.9 m ³ /d
Skin Surface Area	1,155 cm ²	5,000 cm ²
Dust Adherence Factor	0.006 mg/cm ² -d	0.003 mg/cm ²⁰
Body Weight	11.4 kg	71.8 kg
Time Spent Indoors	23.4 h/d	19.3 h/d

ELE $(ng/m^3) =$

 $\frac{(RfD\,(ng/kg/day) - Background\,Dose\,(ng/kg/day)) \times BW\,(kg)}{Inhalation\,Rate\,(m^3/day) \times Relative\,Absorption \times Fraction\,of\,\,time\,spent\,in\,school}$

Exposure Factor (FE)	EF Data	Used
Exposure Factor (EF)	Children 1-2 years	Adults
Dust Ingestion Rate	60 mg/d	27.5 mg/d
Soil Ingestion	50 mg/d	22.5 mg/d
Inhalation Rate	8.0 m ³ /d	15.9 m ³ /d
Skin Surface Area	1,155 cm ²	$5,000 \text{ cm}^2$
Dust Adherence Factor	0.006 mg/cm ² -d	0.003 mg/cm ² -d
Body Weight	11.4 kg	71.8 kg
Time Spent Indoors	23.4 h/d	19.3 h/d

 $ELE (ng/m^3) =$

 $\frac{(RfD\,(ng/kg/day) - Background\,Dose\,(ng/kg/day)) \times BW\,(kg)}{Inhalation\,Rate\,(m^3/day) \times Relative\,Absorption \times Fraction\,of\,\,time\,spent\,in\,school}$

Evposuro Eactor	EF Dat	ta Used	EF Data ÷ B	ody Weight
Exposure Factor	Children	Adults	Children	Adults
(EF)	1-2 years		1-2 years	
Dust Ingestion	60 mg/d	27.5 mg/d	5.3 mg/kg-d	0.4 mg/kg-d
Rate				
Soil Ingestion	50 mg/d	22.5 mg/d	4.4 mg/kg-d	0.3 mg/kg-d
Inhalation Rate	$8.0~\mathrm{m}^3/\mathrm{d}$	15.9 m ³ /d	$0.7~\mathrm{m}^3/\mathrm{kg}$ -d	$0.2 \text{ m}^3/\text{kg-d}$
Skin Surface Area	$1,155 \text{ cm}^2$	$5,000 \text{ cm}^2$	101 cm ² /kg	70 cm ² /kg
Dust Adherence	0.006	0.003	5.3E-4	4.3E-5
Factor	mg/cm ² -d	mg/cm ² -d	mg/cm ² -kg-d	mg/cm ² -kg-d
Body Weight	11.4 kg	71.8 kg		
PCB Dietary	0.002 µg/kg-	0.001 µg/kg-d	0.002 µg/kg-d	0.001 µg/kg-d
Intake	d			

ELE $(ng/m^3) =$

 $\frac{(RfD (ng/kg/day) - Background Dose (ng/kg/day)) \times BW (kg)}{Inhalation Rate (m³/day) \times Relative Absorption \times Fraction of time spent in school}$

Exposure Factor	EF Dat	ta Used	EF Data ÷ B	ody Weight
Exposure Factor	Children	Adults	Children	Adults
(EF)	1-2 years		1-2 years	
Dust Ingestion	60 mg/d	27.5 mg/d	5.3 mg/kg-d	0.4 mg/kg-d
Rate				
Soil Ingestion	50 mg/d	22.5 mg/d	4.4 mg/kg-d	0.3 mg/kg-d
Inhalation Rate	$8.0~\mathrm{m}^3/\mathrm{d}$	15.9 m ³ /d	0.7 m ³ /kg-d	0.2 m ³ /kg-d
Skin Surface Area	$1,155 \text{ cm}^2$	$5,000 \text{ cm}^2$	101 cm ² /kg	70 cm ² /kg
Dust Adherence	0.006	0.003	5.3E-4	4.3E-5
Factor	mg/cm ² -d	mg/cm ² -d	mg/cm²-kg-d	mg/cm ² -kg-d
Body Weight	11.4 kg	71.8 kg		
PCB Dietary	0.002 μg/kg-	0.001 µg/kg-d	0.002 µg/kg-d	0.001 µg/kg-d
Intake	d			

Exposure Levels for Evaluating PCBs in School Indoor Air (ng/m³)

Age 1-<2 yr (Daycare)	Age 2-<3 yr (Daycare)	Age 3-<6 yr (Preschool)	Age 6-<12 yr (Elementary School)	Age 12-<15 yr (Middle School)	Age 15-19 yr (High School)	Age 19+ yr (Adults)
100	100	200	300	500	600	500

ELE
$$(ng/m^3) = \frac{(RfD (ng/kg/day) - Background Dose (ng/kg/day)) \times BW (kg)}{(RfD (ng/kg/day) - Background Dose (ng/kg/day)) \times BW (kg)}$$

 $\frac{(RfD (ng/kg/day) - Background Dose (ng/kg/day)) \times BW (kg)}{Inhalation Rate (m³/day) \times Relative Absorption \times Fraction of time spent in school}$

Assumptions and Uncertainties

- ELEs are calculated using background exposure data that may or may not accurately characterize background exposures at a particular site of interest.
- ELEs are calculated using the RfD for Aroclor 1254, which assumes that an estimate of a safe level of oral exposure to this PCB mixture can be used to estimate a safe level of inhalation exposure to PCBs in indoor school air.

Assumptions and Uncertainties

 ELEs are calculated using background exposure data that may or may not accurately characterize background exposures at a particular site of interest.

$$ELE (ng/m^{3}) = \frac{(RfD (ng/kg/day) - Background Dose (ng/kg/day)) \times BW (kg)}{Inhalation Rate (m^{3}/day) \times Relative Absorption \times Fraction of time spent in school}$$

Exposure Levels for Evaluating PCBs in School Indoor Air (ng/m³) Age Age Age Age Age Age Age 1-<2 yr 2-<3 yr 6-<12 yr 12-<15 yr 15-19 yr 3-<6 yr 19+ yr (Preschool) (Daycare) (Daycare) (Elementary (Middle (High (Adults) School) School) School) 100 100 200 300 **500** 600 **500**

PCB Exposure Sources Included in ELE Calculations

- Indoor air (background) = 6.9 ng/m³
 - Based on mean total PCB concentration in air from 10 homes in Toronto, Canada
- Dust (school and non-school) = 0.22 μg/g
 - Based on mean total PCB concentration in dust samples collected from 20 homes in Austin, TX
- Soil (school and non-school) = 0.05 μg/g
 - Based on samples collected from parks in Helsinki, Finland
- Outdoor air (school and non-school) = 0.5 ng/m³
 - Based on average total PCB concentration in outdoor air in Toronto, Canada
- Food (based on FDA total diet study) = 1-2 ng/kg-day (varies by age)

Exposure Source	PCBs @ bkgd
Indoor air (background) (ng/m³)	6.9
Outdoor air (non-school) (ng/m³)	0.5
Outdoor air (school) (ng/m³)	0.5
Dust (non-school) (µg/g)	0.22
Dust (school) (µg/g)	0.22
Soil (non-school) (µg/g)	0.05
Soil (school) (µg/g)	0.05
Food (ng/kg-d)	1
Total exposure ; PCBs in school indoor air are 300 ng/m³ (ng/kg-d)	20
Relationship to IRIS RfD	=

Exposure Source	PCBs @ bkgd	↑ PCBs school dust & soil	
Indoor air (background) (ng/m³)	6.9	6.9	
Outdoor air (non-school) (ng/m³)	0.5	0.5	
Outdoor air (school) (ng/m³)	0.5	0.5	
Dust (non-school) (µg/g)	0.22	0.22	
Dust (school) (µg/g)	0.22	10	
Soil (non-school) (µg/g)	0.05	0.05	
Soil (school) (µg/g)	0.05	2.5	
Food (ng/kg-d)	1	1	
Total exposure ; PCBs in school indoor air are 300 ng/m³ (ng/kg-d)	20	21	
Relationship to IRIS RfD	=	>	

Exposure Source	PCBs @ bkgd	↑ PCBs school dust & soil	↑ PCBs school dust & soil ↓ bkgd	
Indoor air (background) (ng/m³)	6.9	6.9	2.8	
Outdoor air (non-school) (ng/m³)	0.5	0.5	0.1	
Outdoor air (school) (ng/m³)	0.5	0.5	0.5	
Dust (non-school) (µg/g)	0.22	0.22	0.11	
Dust (school) (µg/g)	0.22	10	10	
Soil (non-school) (µg/g)	0.05	0.05	0.005	
Soil (school) (µg/g)	0.05	2.5	2.5	
Food (ng/kg-d)	1	1	1	
Total exposure ; PCBs in school indoor air are 300 ng/m³ (ng/kg-d)	20	21	20	
Relationship to IRIS RfD	=	>	=	

Relative Contributions of Various Sources of PCB Exposure

Dust

Soil

Diet

Indoor air

Exposure Source	PCBs @ bkgd	↑ PCBs school dust & soil	↑ PCBs school dust & soil ↓ bkgd	No ↑ PCBs school dust & soil ↓ bkgd ↑ PCBs in food
Indoor air (background) (ng/m³)	6.9	6.9	2.8	2.8
Outdoor air (non-school) (ng/m³)	0.5	0.5	0.1	0.1
Outdoor air (school) (ng/m³)	0.5	0.5	0.5	0.5
Dust (non-school) (µg/g)	0.22	0.22	0.11	0.11
Dust (school) (µg/g)	0.22	10	10	0.22
Soil (non-school) (µg/g)	0.05	0.05	0.005	0.005
Soil (school) (µg/g)	0.05	2.5	2.5	0.05
Food (ng/kg-d)	1	1	1	6
Total exposure ; PCBs in school indoor air are 300 ng/m³ (ng/kg-d)	20	21	20	22
Relationship to IRIS RfD	=	>	=	> 2

Assumptions and Uncertainties

- ELEs are calculated using background exposure data that may or may not accurately characterize background exposures at a particular site of interest.
- ELEs are calculated using the RfD for Aroclor 1254, which assumes that an estimate of a safe level of oral exposure to this PCB mixture can be used to estimate a safe level of inhalation exposure to PCBs in indoor school air
 - PCB toxicity is not expected to vary based on route of exposure.
 - Metabolic pathways are similar by each route.
 - Critical effects are systemic, and PCBs are generally not associated with respiratory effects.
 - PCBs are well-absorbed through both oral and inhalation routes.

Research to Reduce Uncertainty

Accurate Exposure Assessment

 What is the congener profile of the PCB mixture?

Comprehensive Health Effect Evaluation

- Developmental neurotoxicity
- Immunotoxicity
- Changes in thyroid hormone levels

Summary

- EPA guidance and tools are available to help school administrators, building owners, and building managers to evaluate and reduce PCB exposures resulting from contaminated building materials.
- The Exposure Levels for Evaluation of PCBs in Indoor School Air (ELEs) can be used, with modification as appropriate, to guide thoughtful evaluation of indoor air quality in schools.

Contact Information

Geniece Lehmann +1-919-541-2289 lehmann.geniece@epa.gov